001/** 002 * Licensed to the Apache Software Foundation (ASF) under one 003 * or more contributor license agreements. See the NOTICE file 004 * distributed with this work for additional information 005 * regarding copyright ownership. The ASF licenses this file 006 * to you under the Apache License, Version 2.0 (the 007 * "License"); you may not use this file except in compliance 008 * with the License. You may obtain a copy of the License at 009 * 010 * http://www.apache.org/licenses/LICENSE-2.0 011 * 012 * Unless required by applicable law or agreed to in writing, software 013 * distributed under the License is distributed on an "AS IS" BASIS, 014 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 015 * See the License for the specific language governing permissions and 016 * limitations under the License. 017 */ 018 019package org.apache.hadoop.metrics2.util; 020 021import org.apache.hadoop.classification.InterfaceAudience; 022 023/** 024 * Helper to compute running sample stats 025 */ 026@InterfaceAudience.Private 027public class SampleStat { 028 private final MinMax minmax = new MinMax(); 029 private long numSamples = 0; 030 private double a0, a1, s0, s1, total; 031 032 /** 033 * Construct a new running sample stat 034 */ 035 public SampleStat() { 036 a0 = s0 = 0.0; 037 total = 0.0; 038 } 039 040 public void reset() { 041 numSamples = 0; 042 a0 = s0 = 0.0; 043 total = 0.0; 044 minmax.reset(); 045 } 046 047 // We want to reuse the object, sometimes. 048 void reset(long numSamples, double a0, double a1, double s0, double s1, 049 double total, MinMax minmax) { 050 this.numSamples = numSamples; 051 this.a0 = a0; 052 this.a1 = a1; 053 this.s0 = s0; 054 this.s1 = s1; 055 this.total = total; 056 this.minmax.reset(minmax); 057 } 058 059 /** 060 * Copy the values to other (saves object creation and gc.) 061 * @param other the destination to hold our values 062 */ 063 public void copyTo(SampleStat other) { 064 other.reset(numSamples, a0, a1, s0, s1, total, minmax); 065 } 066 067 /** 068 * Add a sample the running stat. 069 * @param x the sample number 070 * @return self 071 */ 072 public SampleStat add(double x) { 073 minmax.add(x); 074 return add(1, x); 075 } 076 077 /** 078 * Add some sample and a partial sum to the running stat. 079 * Note, min/max is not evaluated using this method. 080 * @param nSamples number of samples 081 * @param x the partial sum 082 * @return self 083 */ 084 public SampleStat add(long nSamples, double x) { 085 numSamples += nSamples; 086 total += x; 087 088 if (numSamples == 1) { 089 a0 = a1 = x; 090 s0 = 0.0; 091 } 092 else { 093 // The Welford method for numerical stability 094 a1 = a0 + (x - a0) / numSamples; 095 s1 = s0 + (x - a0) * (x - a1); 096 a0 = a1; 097 s0 = s1; 098 } 099 return this; 100 } 101 102 /** 103 * @return the total number of samples 104 */ 105 public long numSamples() { 106 return numSamples; 107 } 108 109 /** 110 * @return the total of all samples added 111 */ 112 public double total() { 113 return total; 114 } 115 116 /** 117 * @return the arithmetic mean of the samples 118 */ 119 public double mean() { 120 return numSamples > 0 ? (total / numSamples) : 0.0; 121 } 122 123 /** 124 * @return the variance of the samples 125 */ 126 public double variance() { 127 return numSamples > 1 ? s1 / (numSamples - 1) : 0.0; 128 } 129 130 /** 131 * @return the standard deviation of the samples 132 */ 133 public double stddev() { 134 return Math.sqrt(variance()); 135 } 136 137 /** 138 * @return the minimum value of the samples 139 */ 140 public double min() { 141 return minmax.min(); 142 } 143 144 /** 145 * @return the maximum value of the samples 146 */ 147 public double max() { 148 return minmax.max(); 149 } 150 151 @Override 152 public String toString() { 153 try { 154 return "Samples = " + numSamples() + 155 " Min = " + min() + 156 " Mean = " + mean() + 157 " Std Dev = " + stddev() + 158 " Max = " + max(); 159 } catch (Throwable t) { 160 return super.toString(); 161 } 162 } 163 164 /** 165 * Helper to keep running min/max 166 */ 167 @SuppressWarnings("PublicInnerClass") 168 public static class MinMax { 169 170 // Float.MAX_VALUE is used rather than Double.MAX_VALUE, even though the 171 // min and max variables are of type double. 172 // Float.MAX_VALUE is big enough, and using Double.MAX_VALUE makes 173 // Ganglia core due to buffer overflow. 174 // The same reasoning applies to the MIN_VALUE counterparts. 175 static final double DEFAULT_MIN_VALUE = Float.MAX_VALUE; 176 static final double DEFAULT_MAX_VALUE = Float.MIN_VALUE; 177 178 private double min = DEFAULT_MIN_VALUE; 179 private double max = DEFAULT_MAX_VALUE; 180 181 public void add(double value) { 182 if (value > max) max = value; 183 if (value < min) min = value; 184 } 185 186 public double min() { return min; } 187 public double max() { return max; } 188 189 public void reset() { 190 min = DEFAULT_MIN_VALUE; 191 max = DEFAULT_MAX_VALUE; 192 } 193 194 public void reset(MinMax other) { 195 min = other.min(); 196 max = other.max(); 197 } 198 } 199}