
Copyright © 2008 The Apache Software Foundation. All rights reserved.

GridMix

Table of contents

1 Overview.. 2

2 Usage.. 2

3 General Configuration Parameters...3

4 Job Types..5

5 Job Submission Policies...6

6 Emulating Users and Queues...8

7 Emulating Distributed Cache Load..10

8 Configuration of Simulated Jobs... 10

9 Emulating Compression/Decompression... 10

10 Emulating High-Ram jobs..11

11 Emulating resource usages... 12

12 Simplifying Assumptions... 13

13 Appendix...14

GridMix

Page 2Copyright © 2008 The Apache Software Foundation. All rights reserved.

1 Overview

GridMix is a benchmark for Hadoop clusters. It submits a mix of synthetic jobs, modeling a
profile mined from production loads.

There exist three versions of the GridMix tool. This document discusses the third (checked
into src/contrib), distinct from the two checked into the src/benchmarks sub-
directory. While the first two versions of the tool included stripped-down versions of
common jobs, both were principally saturation tools for stressing the framework at scale. In
support of a broader range of deployments and finer-tuned job mixes, this version of the tool
will attempt to model the resource profiles of production jobs to identify bottlenecks, guide
development, and serve as a replacement for the existing GridMix benchmarks.

To run GridMix, you need a MapReduce job trace describing the job mix for a given cluster.
Such traces are typically generated by Rumen (see Rumen documentation). GridMix also
requires input data from which the synthetic jobs will be reading bytes. The input data need
not be in any particular format, as the synthetic jobs are currently binary readers. If you are
running on a new cluster, an optional step generating input data may precede the run.

In order to emulate the load of production jobs from a given cluster on the same or another
cluster, follow these steps:
1. Locate the job history files on the production cluster. This location is specified by

the mapred.job.tracker.history.completed.location configuration
property of the cluster.

2. Run Rumen to build a job trace in JSON format for all or select jobs.
3. Use GridMix with the job trace on the benchmark cluster.

Jobs submitted by GridMix have names of the form "GRIDMIXnnnnnn", where "nnnnnn"
is a sequence number padded with leading zeroes.

2 Usage

Basic command-line usage without configuration parameters:

org.apache.hadoop.mapred.gridmix.Gridmix [-generate <size>] [-users <users-list>] <iopath>
 <trace>

Basic command-line usage with configuration parameters:

org.apache.hadoop.mapred.gridmix.Gridmix \
 -Dgridmix.client.submit.threads=10 -Dgridmix.output.directory=foo \
 [-generate <size>] [-users <users-list>] <iopath> <trace>

GridMix

Page 3Copyright © 2008 The Apache Software Foundation. All rights reserved.

Note:

Configuration parameters like -Dgridmix.client.submit.threads=10 and -
Dgridmix.output.directory=foo as given above should be used before other GridMix
parameters.

The <iopath> parameter is the working directory for GridMix. Note that this can either
be on the local file-system or on HDFS, but it is highly recommended that it be the same as
that for the original job mix so that GridMix puts the same load on the local file-system and
HDFS respectively.

The -generate option is used to generate input data and Distributed Cache files for the

synthetic jobs. It accepts standard units of size suffixes, e.g. 100g will generate 100 * 230

bytes as input data. <iopath>/input is the destination directory for generated input data
and/or the directory from which input data will be read. HDFS-based Distributed Cache files
are generated under the distributed cache directory <iopath>/distributedCache.
If some of the needed Distributed Cache files are already existing in the distributed cache
directory, then only the remaining non-existing Distributed Cache files are generated when -
generate option is specified.

The -users option is used to point to a users-list file (see Emulating Users and Queues).

The <trace> parameter is a path to a job trace generated by Rumen. This trace can be
compressed (it must be readable using one of the compression codecs supported by the
cluster) or uncompressed. Use "-" as the value of this parameter if you want to pass an
uncompressed trace via the standard input-stream of GridMix.

The class org.apache.hadoop.mapred.gridmix.Gridmix can be found in the
JAR contrib/gridmix/hadoop-gridmix-$VERSION.jar inside your Hadoop
installation, where $VERSION corresponds to the version of Hadoop installed. A simple way
of ensuring that this class and all its dependencies are loaded correctly is to use the hadoop
wrapper script in Hadoop:

hadoop jar <gridmix-jar> org.apache.hadoop.mapred.gridmix.Gridmix \
 [-generate <size>] [-users <users-list>] <iopath> <trace>

The supported configuration parameters are explained in the following sections.

3 General Configuration Parameters

GridMix

Page 4Copyright © 2008 The Apache Software Foundation. All rights reserved.

Parameter Description

gridmix.output.directory The directory into which output will be written. If
specified, iopath will be relative to this parameter.
The submitting user must have read/write access to
this directory. The user should also be mindful of any
quota issues that may arise during a run. The default
is "gridmix".

gridmix.client.submit.threads The number of threads submitting jobs to the cluster.
This also controls how many splits will be loaded
into memory at a given time, pending the submit time
in the trace. Splits are pre-generated to hit submission
deadlines, so particularly dense traces may want
more submitting threads. However, storing splits in
memory is reasonably expensive, so you should raise
this cautiously. The default is 1 for the SERIAL job-
submission policy (see Job Submission Policies) and
one more than the number of processors on the client
machine for the other policies.

gridmix.submit.multiplier The multiplier to accelerate or decelerate the
submission of jobs. The time separating two jobs is
multiplied by this factor. The default value is 1.0.
This is a crude mechanism to size a job trace to a
cluster.

gridmix.client.pending.queue.depth The depth of the queue of job descriptions awaiting
split generation. The jobs read from the trace occupy
a queue of this depth before being processed by the
submission threads. It is unusual to configure this.
The default is 5.

gridmix.gen.blocksize The block-size of generated data. The default value is
256 MiB.

gridmix.gen.bytes.per.file The maximum bytes written per file. The default
value is 1 GiB.

gridmix.min.file.size The minimum size of the input files. The default
limit is 128 MiB. Tweak this parameter if you see an
error-message like "Found no satisfactory file" while
testing GridMix with a relatively-small input data-set.

gridmix.max.total.scan The maximum size of the input files. The default
limit is 100 TiB.

GridMix

Page 5Copyright © 2008 The Apache Software Foundation. All rights reserved.

Parameter Description

gridmix.task.jvm-options.enable Enables Gridmix to configure the simulated task's
max heap options using the values obtained from the
original task (i.e via trace).

4 Job Types

GridMix takes as input a job trace, essentially a stream of JSON-encoded job descriptions.
For each job description, the submission client obtains the original job submission time
and for each task in that job, the byte and record counts read and written. Given this data, it
constructs a synthetic job with the same byte and record patterns as recorded in the trace. It
constructs jobs of two types:

Job Type Description

LOADJOB A synthetic job that emulates the workload
mentioned in Rumen trace. In the current version we
are supporting I/O. It reproduces the I/O workload on
the benchmark cluster. It does so by embedding the
detailed I/O information for every map and reduce
task, such as the number of bytes and records read
and written, into each job's input splits. The map
tasks further relay the I/O patterns of reduce tasks
through the intermediate map output data.

SLEEPJOB A synthetic job where each task does nothing but
sleep for a certain duration as observed in the
production trace. The scalability of the Job Tracker is
often limited by how many heartbeats it can handle
every second. (Heartbeats are periodic messages sent
from Task Trackers to update their status and grab
new tasks from the Job Tracker.) Since a benchmark
cluster is typically a fraction in size of a production
cluster, the heartbeat traffic generated by the slave
nodes is well below the level of the production
cluster. One possible solution is to run multiple
Task Trackers on each slave node. This leads to the
obvious problem that the I/O workload generated
by the synthetic jobs would thrash the slave nodes.
Hence the need for such a job.

The following configuration parameters affect the job type:

GridMix

Page 6Copyright © 2008 The Apache Software Foundation. All rights reserved.

Parameter Description

gridmix.job.type The value for this key can be one of LOADJOB or
SLEEPJOB. The default value is LOADJOB.

gridmix.key.fraction For a LOADJOB type of job, the fraction of a record
used for the data for the key. The default value is 0.1.

gridmix.sleep.maptask-only For a SLEEPJOB type of job, whether to ignore the
reduce tasks for the job. The default is false.

gridmix.sleep.fake-locations For a SLEEPJOB type of job, the number of fake
locations for map tasks for the job. The default is 0.

gridmix.sleep.max-map-time For a SLEEPJOB type of job, the maximum runtime
for map tasks for the job in milliseconds. The default
is unlimited.

gridmix.sleep.max-reduce-time For a SLEEPJOB type of job, the maximum runtime
for reduce tasks for the job in milliseconds. The
default is unlimited.

5 Job Submission Policies

GridMix controls the rate of job submission. This control can be based on the trace
information or can be based on statistics it gathers from the Job Tracker. Based on the
submission policies users define, GridMix uses the respective algorithm to control the job
submission. There are currently three types of policies:

Job Submission Policy Description

STRESS Keep submitting jobs so that the cluster remains
under stress. In this mode we control the rate of job
submission by monitoring the real-time load of the
cluster so that we can maintain a stable stress level
of workload on the cluster. Based on the statistics
we gather we define if a cluster is underloaded or
overloaded. We consider a cluster underloaded if and
only if the following three conditions are true:
1. the number of pending and running jobs are

under a threshold TJ
2. the number of pending and running maps are

under threshold TM
3. the number of pending and running reduces are

under threshold TR

The thresholds TJ, TM and TR are proportional
to the size of the cluster and map, reduce slots
capacities respectively. In case of a cluster being

GridMix

Page 7Copyright © 2008 The Apache Software Foundation. All rights reserved.

Job Submission Policy Description

overloaded, we throttle the job submission. In the
actual calculation we also weigh each running task
with its remaining work - namely, a 90% complete
task is only counted as 0.1 in calculation. Finally, to
avoid a very large job blocking other jobs, we limit
the number of pending/waiting tasks each job can
contribute.

REPLAY In this mode we replay the job traces faithfully. This
mode exactly follows the time-intervals given in the
actual job trace.

SERIAL In this mode we submit the next job only once the job
submitted earlier is completed.

The following configuration parameters affect the job submission policy:

Parameter Description

gridmix.job-submission.policy The value for this key would be one of the three:
STRESS, REPLAY or SERIAL. In most of the cases
the value of key would be STRESS or REPLAY. The
default value is STRESS.

gridmix.throttle.jobs-to-tracker-
ratio

In STRESS mode, the minimum ratio of running
jobs to Task Trackers in a cluster for the cluster to
be considered overloaded. This is the threshold TJ
referred to earlier. The default is 1.0.

gridmix.throttle.maps.task-to-slot-
ratio

In STRESS mode, the minimum ratio of pending and
running map tasks (i.e. incomplete map tasks) to the
number of map slots for a cluster for the cluster to
be considered overloaded. This is the threshold TM
referred to earlier. Running map tasks are counted
partially. For example, a 40% complete map task is
counted as 0.6 map tasks. The default is 2.0.

gridmix.throttle.reduces.task-to-
slot-ratio

In STRESS mode, the minimum ratio of pending and
running reduce tasks (i.e. incomplete reduce tasks) to
the number of reduce slots for a cluster for the cluster
to be considered overloaded. This is the threshold TR
referred to earlier. Running reduce tasks are counted
partially. For example, a 30% complete reduce task is
counted as 0.7 reduce tasks. The default is 2.5.

gridmix.throttle.maps.max-slot-
share-per-job

In STRESS mode, the maximum share of a cluster's
map-slots capacity that can be counted toward a job's

GridMix

Page 8Copyright © 2008 The Apache Software Foundation. All rights reserved.

Parameter Description

incomplete map tasks in overload calculation. The
default is 0.1.

gridmix.throttle.reducess.max-slot-
share-per-job

In STRESS mode, the maximum share of a cluster's
reduce-slots capacity that can be counted toward a
job's incomplete reduce tasks in overload calculation.
The default is 0.1.

6 Emulating Users and Queues

Typical production clusters are often shared with different users and the cluster capacity
is divided among different departments through job queues. Ensuring fairness among jobs
from all users, honoring queue capacity allocation policies and avoiding an ill-behaving job
from taking over the cluster adds significant complexity in Hadoop software. To be able to
sufficiently test and discover bugs in these areas, GridMix must emulate the contentions of
jobs from different users and/or submitted to different queues.

Emulating multiple queues is easy - we simply set up the benchmark cluster with the same
queue configuration as the production cluster and we configure synthetic jobs so that they
get submitted to the same queue as recorded in the trace. However, not all users shown in
the trace have accounts on the benchmark cluster. Instead, we set up a number of testing user
accounts and associate each unique user in the trace to testing users in a round-robin fashion.

The following configuration parameters affect the emulation of users and queues:

Parameter Description

gridmix.job-submission.use-queue-in-
trace

When set to true it uses exactly the same set of
queues as those mentioned in the trace. The default
value is false.

gridmix.job-submission.default-queue Specifies the default queue to which all the jobs
would be submitted. If this parameter is not specified,
GridMix uses the default queue defined for the
submitting user on the cluster.

gridmix.user.resolve.class Specifies which UserResolver implementation to
use. We currently have three implementations:
1. org.apache.hadoop.mapred.gridmix.EchoUserResolver

- submits a job as the user who submitted the
original job. All the users of the production
cluster identified in the job trace must also have
accounts on the benchmark cluster in this case.

2. org.apache.hadoop.mapred.gridmix.SubmitterUserResolver
- submits all the jobs as current GridMix user. In

GridMix

Page 9Copyright © 2008 The Apache Software Foundation. All rights reserved.

Parameter Description

this case we simply map all the users in the trace
to the current GridMix user and submit the job.

3. org.apache.hadoop.mapred.gridmix.RoundRobinUserResolver
- maps trace users to test users in a round-robin
fashion. In this case we set up a number of
testing user accounts and associate each unique
user in the trace to testing users in a round-robin
fashion.

The default is
org.apache.hadoop.mapred.gridmix.SubmitterUserResolver.

If the parameter gridmix.user.resolve.class is set to
org.apache.hadoop.mapred.gridmix.RoundRobinUserResolver, we need
to define a users-list file with a list of test users. This is specified using the -users option
to GridMix.

Note:

Specifying a users-list file using the -users option is mandatory when using the round-robin user-
resolver. Other user-resolvers ignore this option.

A users-list file has one user per line, each line of the format:

 <username>

For example:

 user1
 user2
 user3

In the above example we have defined three users user1, user2 and user3. Now we
would associate each unique user in the trace to the above users defined in round-robin
fashion. For example, if trace's users are tuser1, tuser2, tuser3, tuser4 and
tuser5, then the mappings would be:

 tuser1 -> user1
 tuser2 -> user2
 tuser3 -> user3
 tuser4 -> user1
 tuser5 -> user2

GridMix

Page 10Copyright © 2008 The Apache Software Foundation. All rights reserved.

For backward compatibility reasons, each line of users-list file can contain username
followed by groupnames in the form username[,group]*. The groupnames will be ignored by
Gridmix.

7 Emulating Distributed Cache Load

Gridmix emulates Distributed Cache load by default for LOADJOB type of jobs. This is
done by precreating the needed Distributed Cache files for all the simulated jobs as part of a
separate MapReduce job.

Emulation of Distributed Cache load in gridmix simulated jobs can be disabled by
configuring the property gridmix.distributed-cache-emulation.enable
to false. But generation of Distributed Cache data by gridmix is driven by -generate
option and is independent of this configuration property.

Both generation of Distributed Cache files and emulation of Distributed Cache load are
disabled if:

• input trace comes from the standard input-stream instead of file, or
• <iopath> specified is on local file-system, or
• any of the ascendant directories of the distributed cache directory i.e. <iopath>/

distributedCache (including the distributed cache directory) doesn't have execute
permission for others.

8 Configuration of Simulated Jobs

Gridmix3 sets some configuration properties in the simulated Jobs submitted by it so that
they can be mapped back to the corresponding Job in the input Job trace. These configuration
parameters include:

Parameter Description

gridmix.job.original-job-id The job id of the original cluster's job corresponding
to this simulated job.

gridmix.job.original-job-name The job name of the original cluster's job
corresponding to this simulated job.

9 Emulating Compression/Decompression

MapReduce supports data compression and decompression. Input to a MapReduce job
can be compressed. Similarly, output of Map and Reduce tasks can also be compressed.
Compression/Decompression emulation in GridMix is important because emulating
compression/decompression will effect the CPU and Memory usage of the task. A task

GridMix

Page 11Copyright © 2008 The Apache Software Foundation. All rights reserved.

emulating compression/decompression will affect other tasks and daemons running on the
same node.

Compression emulation is enabled if gridmix.compression-emulation.enable
is set to true. By default compression emulation is enabled for jobs of type LOADJOB.
With compression emulation enabled, GridMix will now generate compressed text data
with a constant compression ratio. Hence a simulated GridMix job will now emulate
compression/decompression using compressible text data (having a constant compression
ratio), irrespective of the compression ratio observed in the actual job.

A typical MapReduce Job deals with data compression/decompression in the following
phases

• Job input data decompression: GridMix generates compressible input
data when compression emulation is enabled. Based on the original job's configuration,
a simulated GridMix job will use a decompressor to read the compressed input data.
Currently, GridMix uses mapreduce.input.fileinputformat.inputdir to
determine if the original job used compressed input data or not. If the original job's input
files are uncompressed then the simulated job will read the compressed input file without
using a decompressor.

• Intermediate data compression and decompression: If the original
job has map output compression enabled then GridMix too will enable map output
compression for the simulated job. Accordingly, the reducers will use a decompressor to
read the map output data.

• Job output data compression: If the original job's output is compressed then
GridMix too will enable job output compression for the simulated job.

The following configuration parameters affect compression emulation

Parameter Description

gridmix.compression-emulation.enable Enables compression emulation in simulated
GridMix jobs. Default is true.

With compression emulation turned on, GridMix will generate compressed
input data. Hence the total size of the input data will be lesser than the expected
size. Set gridmix.min.file.size to a smaller value (roughly 10% of
gridmix.gen.bytes.per.file) for enabling GridMix to correctly emulate
compression.

10 Emulating High-Ram jobs

MapReduce allows users to define a job as a High-Ram job. Tasks from a High-Ram job
can occupy multiple slots on the task-trackers. Task-tracker assigns fixed virtual memory for

GridMix

Page 12Copyright © 2008 The Apache Software Foundation. All rights reserved.

each slot. Tasks from High-Ram jobs can occupy multiple slots and thus can use up more
virtual memory as compared to a default task.

Emulating this behavior is important because of the following reasons

• Impact on scheduler: Scheduling of tasks from High-Ram jobs impacts the scheduling
behavior as it might result into slot reservation and slot/resource utilization.

• Impact on the node : Since High-Ram tasks occupy multiple slots, trackers do some
bookkeeping for allocating extra resources for these tasks. Thus this becomes a precursor
for memory emulation where tasks with high memory requirements needs to be
considered as a High-Ram task.

High-Ram feature emulation can be disabled by setting gridmix.highram-
emulation.enable to false.

11 Emulating resource usages

Usages of resources like CPU, physical memory, virtual memory, JVM heap etc are recorded
by MapReduce using its task counters. This information is used by GridMix to emulate the
resource usages in the simulated tasks. Emulating resource usages will help GridMix exert
similar load on the test cluster as seen in the actual cluster.

MapReduce tasks use up resources during its entire lifetime. GridMix also
tries to mimic this behavior by spanning resource usage emulation across the
entire lifetime of the simulated task. Each resource to be emulated should
have an emulator associated with it. Each such emulator should implement the
org.apache.hadoop.mapred.gridmix.emulators.resourceusage .ResourceUsageEmulatorPlugin
interface. Resource emulators in GridMix are plugins that can be configured (plugged in or
out) before every run. GridMix users can configure multiple emulator plugins by passing a
comma separated list of emulators as a value for the gridmix.emulators.resource-
usage.plugins parameter.

List of emulators shipped with GridMix:

• Cumulative CPU usage emulator: GridMix uses the cumulative CPU usage
value published by Rumen and makes sure that the total cumulative CPU
usage of the simulated task is close to the value published by Rumen.
GridMix can be configured to emulate cumulative CPU usage by adding
org.apache.hadoop.mapred.gridmix.emulators.resourceusage .CumulativeCpuUsageEmulatorPlugin
to the list of emulator plugins configured for the gridmix.emulators.resource-
usage.plugins parameter. CPU usage emulator is designed in such a way that it only
emulates at specific progress boundaries of the task. This interval can be configured using
gridmix.emulators.resource-usage.cpu.emulation-interval. The
default value for this parameter is 0.1 i.e 10%.

GridMix

Page 13Copyright © 2008 The Apache Software Foundation. All rights reserved.

• Total heap usage emulator: GridMix uses the total heap usage value published by Rumen
and makes sure that the total heap usage of the simulated task is close to the value
published by Rumen. GridMix can be configured to emulate total heap usage by adding
org.apache.hadoop.mapred.gridmix.emulators.resourceusage .TotalHeapUsageEmulatorPlugin
to the list of emulator plugins configured for the gridmix.emulators.resource-
usage.plugins parameter. Heap usage emulator is designed in such a way that
it only emulates at specific progress boundaries of the task. This interval can be
configured using gridmix.emulators.resource-usage.heap.emulation-
interval . The default value for this parameter is 0.1 i.e 10% progress interval.

Note that GridMix will emulate resource usages only for jobs of type LOADJOB.

12 Simplifying Assumptions

GridMix will be developed in stages, incorporating feedback and patches from the
community. Currently its intent is to evaluate MapReduce and HDFS performance and not
the layers on top of them (i.e. the extensive lib and sub-project space). Given these two
limitations, the following characteristics of job load are not currently captured in job traces
and cannot be accurately reproduced in GridMix:

• Filesystem Properties - No attempt is made to match block sizes, namespace hierarchies,
or any property of input, intermediate or output data other than the bytes/records
consumed and emitted from a given task. This implies that some of the most heavily-used
parts of the system - text processing, streaming, etc. - cannot be meaningfully tested with
the current implementation.

• I/O Rates - The rate at which records are consumed/emitted is assumed to be limited only
by the speed of the reader/writer and constant throughout the task.

• Memory Profile - No data on tasks' memory usage over time is available, though the max
heap-size is retained.

• Skew - The records consumed and emitted to/from a given task are assumed to follow
observed averages, i.e. records will be more regular than may be seen in the wild. Each
map also generates a proportional percentage of data for each reduce, so a job with
unbalanced input will be flattened.

• Job Failure - User code is assumed to be correct.
• Job Independence - The output or outcome of one job does not affect when or whether a

subsequent job will run.

GridMix

Page 14Copyright © 2008 The Apache Software Foundation. All rights reserved.

13 Appendix

Issues tracking the original implementations of GridMix1, GridMix2, and GridMix3 can
be found on the Apache Hadoop MapReduce JIRA. Other issues tracking the current
development of GridMix can be found by searching the Apache Hadoop MapReduce JIRA

https://issues.apache.org/jira/browse/HADOOP-2369
https://issues.apache.org/jira/browse/HADOOP-3770
https://issues.apache.org/jira/browse/MAPREDUCE-776
https://issues.apache.org/jira/browse/MAPREDUCE/component/12313086

	Table of contents
	1 Overview
	2 Usage
	3 General Configuration Parameters
	4 Job Types
	5 Job Submission Policies
	6 Emulating Users and Queues
	7 Emulating Distributed Cache Load
	8 Configuration of Simulated Jobs
	9 Emulating Compression/Decompression
	10 Emulating High-Ram jobs
	11 Emulating resource usages
	12 Simplifying Assumptions
	13 Appendix

